
Operation
This example shows the dialogue used with the
machine code converter to convert a G·code program
called GPROG into a machine code program called
MPROG.

>*RUN "CONVERT"  
MACHINE CODE CONVERTER  
G‐code filename:GPROG  
Library filename:L3&l900 
Machine code filename:MPROG 
Sideways ROM format (Y/N):N  
(Program is converted)  
Execute program (Y /N):Y 
(Program is executed)  
BASIC  
> 

The library filename is formed from the level and
execution address required (in the example, a level 3
library with an execution address of &1900 is used).

Sideways ROMs
This example shows the dialogue used with the
machine code converter to convert a G·code program
called GPROG into a sideways ROM image called
SIDEPRG.
  
>*RUN "CONVERT"  
MACHINE CODE CONVERTER  
G‐code filename:GPROG  
Library filename:L3&8100  
Machine code filename:SIDEPRG  
Sideways ROM format (YIN): Y  
Invocation command:BEGIN  
Title string:EXAMPLE ROM  
HELP message:Sample ROM 1.00  
Variable address:&l900  
(Program is converted)  
> 
  
Notice that a library execution address of&8100 is
used. Once the ROM is installed, it can be executed
by typing '*BEGIN'. The operating system will then
print the title string and jump into the ROM.
'*HELP' (with no parameters) will include the string
'Sample ROM 1.00'.

Relocator
Operation

This example shows how to use the Relocator to
change the execution address of a G·code program to
&E00. The original program is called GPROG and the
new version is called GPROGL.
 
>*RUN "RELOC" G‐CODE RELOCATOR  
Object filename:GPROG  
New object filename:GPROGL  
New address:&E00  
(Program is converted)  
>  

Library generator
Operation

This example shows how to create a level 2 library
with an execution address of &3000. The library will
be stored on drive 1.
 
>CHAIN "LIBGEN" 
LIBRARY GENERATOR  
Execution address:&3000 
Level:2  
Destination drive: 1  
(Library is constructed)  
> 

G-code Compiler
Restrictions

LOMEM, PAGE, TOP, EVAL, TRACE,
assembly language - Not implemented.
RND - Returns result as an integer, except when used
with a literal numeric argument of zero or one, when
the result is real. For example, 'RND(A%)' is an
integer (even if A% is zero or one), and 'RND(I)' is
real.
CHAIN - Refers to another G-code program.
FN -When calling a user defined function, the result is
assumed to be real unless a '%' or a '$' is appended to
the name. For example, a function called 'WORD'
ending with '=ANS$' must be called with
'FNWORD$'.

Operation

This example shows the dialogue used with
Accelerator to compile a program stored on disc/
cassette called MYPROG and store the compiled
version in a file called GPROG, as well as leaving it in
memory.
 
>* ACCELERATOR  
(C) 1985 Computer Concepts  
Source filename:MYPROG Object 
filename:GPROG  
3450  
3450  
3450  
Execute program (Y IN):N 
BASIC  
>  

If the source filename is omitted, the compiler
attempts to compile the program currently in memory
at the default PAGE address. If the object filename is
omitted, the compiler will not save the G-code
program it generates.
If the 'Execute' prompt is answered with 'V' or
carriage return, the G-code interpreter is entered
directly.

G-code Interpreter
Operation

This example shows the dialogue used with
Accelerator to execute a G-code program stored on
disc/cassette called GPROG. .
 
>*GRUN  
G‐CODE INTERPRETER  
Object filename:GPROG (Program is 
executed) Re‐execute (Y IN):N BASIC  
>  

If the object filename is omitted, the G-code
interpreter attempts to run the G-code program stored
in memory above the BASIC program at the default
PAGE address.
If the 'Re-execute' prompt is answered with a 'V',
the program is re-executed.

Machine code converter

Restrictions
Real variables, real arithmetic, SIN, COS, TAN,
ASN, ACS, ATN, DEG, RAD, EXP, LN, LOG,
INT, SQR, PI, VAL, LOMEM, PAGE, TOP,
EVAL, TRACE, assembly language - Not
implemented.
GOTO and GOSUB cannot be used with computed
destinations. Integers are stored in 16 bits, with a range
of -32, 768 to 32,767. RND cannot be used with a
literal numeric argument of zero or one. A '%' or a '$'
is required at the end of each user defined function
name to indicate the desired type of the result. This is
only required where the function is called, and will
cause an error if used in the definition.
CHAIN refers to another machine code program.
Escape is not automatically trapped.
Line numbers are not included in error reports.

Libraries
Level 1 libraries are about 3K long and support the
following routines:
*commands, ADS, ADVAL, CALL;CLEAR,
CLG, COLOUR, DIM, DRAW, END,
ENVELOPE, ERR, FALSE, FOR, GCOL, GET,
GOSUB, GOTO, HIMEM, IF, INKEY, LET,
MODE, MOVE, NEXT, ON ERROR, PLOT,
POINT, POS, PRINT, REPEAT, REPORT,
RND, SGN, SOUND, SPC, STOP, TAB,
TIME, TRUE, UNTIL, USR, VDU, . VPOS,
WIDTH, I,?, *, -, +,DIV,MOD,EOR,AND,
OR, NOT, < ,> , < > ,<= and >=. (N.B. Strings
are not supported).

Level 2 libraries are about 4.5K long and support
everything in level 1 with the addition of the
following routines:
ASC, BGET~, BPUT~, CHR$, CLOSE~,
COUNT, EOF ~, EXT~, GET$, INKEY$,
INPUT, LEFT$, LEN, MID$, OPENIN,
OPENOUT, OPENUP, OSCU, PTR ~ ,
RIGHT$, STR$, STR$- and VAL. (N .B. Strings
are supported).

Level 3 libraries are about 6K long and support
everything in levels 1 and 2, with the following
additions:
INSTR, STRING$, READ, DATA, RESTORE,
PRINT$, INPUT$, PROC, FN, DEF,
ENDPROC and LOCAL.

