

2

3

Errata extra

First of all I would like to thank Jalov that he was willing to scan the whole
manual for me so I could create this digital version.

There are some changes comparing to the original manual.
During the conversion I could not keep the same page numbering as the
original one. So I had to create a new Contence page with different page
numbers.

Also the index pages at the end of the manual are not there. This because this
is a lot of figuring out what has changed comparing to the original manual and
this manual.
Together with this manual I have included the original DFS disk (in image
format). But I also have included an ADFS version of this disk (also as disk
image)

There is a slight difference between the DFS and the ADFS disk image.
On the DFS disk there are files with an '&' symbol in it.
I had to change the name of these files on the ADFS disk image, because
ADFS does not support this character in their filenames.
All the files that start with 'L1' have been moved to a directory called L1. This
is the same for L2 and L3. So L2 files are in directory L2 and L3 files are in L3.
Then I have renamed the filenames. e.g. L3&1900 is 1900 in directory L3.
So to call the file you have to type L3.1900 instead of L3&1900.
(The files are explained on the 'Errata pages' from Computer Concept.)

If there are any corrections to be done in this manual, (spelling or style errors
or any other) please let me know.
Hope you Acorn people like the new addition to the library.

K. Keevel (k.keevel@chello.nl)

4

5

Errata Sheet
1. Disc contents
The disc supplied with Accelerator is readable by both 40 and 80 track drives. Side
zero is recorded in 40 track format and the other side is in 80 track format. It is
supplied write-protected and so should be backed up onto a fresh disc as soon as
possible. You can do this using the normal DFS *BACKUP command, taking care to
specify the correct side of the disc for your drives.

The disc contains the following files:
CONVERT - The machine code converter, which should be executed by typing

*RUN CONVERT.
RELOC -The G-code relocator, which should be executed by typing *RUN

RELOC.
LIBGEN - The library generator, which should be executed by typing

*RUN LIBGEN.

If any of the above programs are accidently CHAINed, an appropriate error message
will be given.
L3&1900 - A level 3 library for use at &1900.
L2&1900 - A level 2 library for use at &1900.
Ll&1900 - A level 1 library for use at &1900.
L3&0E00 - A level 3 library for use at &0E00.
L2&0E00 - A level 2 library for use at &0E00.
Ll&0E00 - A level 1 library for use at &0E00.
L3&0800 - A level 3 library for use at &0800 on the second processor.
L2&0800 - A level 2 library for use at &0800 on the second processor.
Ll&0800 - A level 1 library for use at &0800 on the second processor.
L3&8100 - A level 3 library for use at &8100 in sideways ROM generation.
L2&8100 - A level 2 library for use at &8100 in sideways ROM generation.
Ll&8100 - A level 3 library for use at &8100 in sideways ROM generation.

LIFE - A simple version of John Conway's Life simulation. This program is supplied
for demonstration purposes only, and should not be construed as an attempt at writing
the ultimate version of Life. Note that the program cannot be used on the Tube. It will
compile to G-code and machine code without problems. When the program is run, it
will display a blank mode 7 screen, waiting for you to type in the starting
configuration. To do this, you can manipulate the cursor over the screen using '2' for
left, 'X' for right, '*' for up and '?' for down. To fill the current cell, press the return
key. The program will start computing subsequent generations when the 'E' key is
pressed.
CIRCLE - The demonstration program from page 3 of the manual.
CHNl, CHN2 - The demonstration programs from page 34 of the manual.

6

2. VAL
The function VAL normally returns a floating point result. If you want it to return an
integer result (to allow it to be converted to machine code for
example), you must use VAL % instead. '

3. The machine code converter
The machine code converter issues another prompt when generating sideways ROMs.
The prompt is 'Variable address:'. The response should be the hexadecimal address
where variable storage should begin. A typical value would be &2000. The converter
needs this information so that it can assign new storage addresses to all the variables in
the program under conversion. It will then use all the space from the address specified
up to HIMEM to store strings, arrays and non-resident integer variables.

4. Resident integer variables
As mentioned in the manual, the machine code converter stores the resident integer
variables in zero page rather than page four. This presents problems when ROMs like
the Graphics ROM are used, which expect to find the values of these variables in page
four. There are two solutions. Either access page four directly, using the! operator, or
use the OSCLI statement. For example, rather than *FORWARD T%, use OSCLI
"FORWARD" +STR$ (T%).

5. Code length
The G-code compiler gives one extra line of information when it has finished
compiling a program. This is the length of the G-code program generated, given as a
decimal number of bytes.

6. *ACCELERATOR
To reduce clashes with the DFS *ACCESS command, Accelerator will ignore *ACC.
or *A. if any further text is included on the same line. Thus, *A. will be treated as
*ACCELERATOR, but *A. PROG will be ignored by Accelerator, allowing the
DFS to treat it as an *ACCESS command. Accelerator also follows the Computer
Concepts standard of allowing a letter C to be used as the first letter of
*ACCELERATOR and *GRUN, to prevent further clashes.

7

CONTENTS
  
1. Introduction ..8 
2. Sample session ...10 
3. G-code theory ...14 
4. G-code compiler restrictions ..17 
5. Using the G-code compiler and interpreter ..22 
6. Machine code converter theory ...26 
7. Machine code converter restrictions...27 
8. Using the machine code converter ...31 
9. Chaining between BASIC, G-code and machine code34 
10. Developing sideways ROMs..38 
11. Technical information..40 
12. Keyword summary...43 
13. Error message summary..59 
14. Specifications ...68 

Accelerator is designed and distributed by Computer Concepts.

This manual was typeset direct from Wordwise files by Quorum Technical Services Ltd.,
Cheltenham.

The abbreviation BBC Micro for British Broadcasting Corporation Microcomputer has been
used throughout this book.

© COMPUTER CONCEPTS 1985
First published in 1985 by Computer Concepts
All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means without the prior consent of the copyright holder.

Computer Concepts cannot be held responsible for any loss due to the use of Accelerator.

8

1. Introduction

Accelerator is a BASIC compiler system for the BBC Micro that can make
BBC BASIC programs run up to ten times faster than normal. It is
compatible with all the standard SSC Micro configurations, including the
6502 second processor, discs, Econet and, to a lesser extent, cassettes.

Accelerator increases the speed of programs by translating them either into
machine code or a specially designed 'artificial' machine code called G-code.
In the case of the former the resulting program can be executed with *RUN
on any BSC Microcomputer, regardless of the presence of Accelerator. G-
code programs are executed by a module within Accelerator, and so can
only be run on machines fitted with Accelerator.

As a rough guide, G-code programs are up to about five times faster than
the original BASIC program and machine code programs increase in speed
by about three times faster still.
The actual speed increase measured for a particular program depends greatly
upon the nature of the program. For example, a program doing extensive
file handling should not be expected
to show a dramatic increase, since the computer (whatever language it is
running in) will spend more time waiting for the comparatively slow disc
and cassette systems than in actual computation. Conversely, a program
written using long variable names and other 'readability' features can be
expected to show a quite dramatic speed increase.

Although G-code programs execute much more slowly than machine code,
Accelerator can compile to G-code in a fraction of the time it takes to
compile all the way to machine code.

The vast majority of BBC BASIC programs can be translated into G-code
without modification, but only programs that confine themselves to integer
arithmetic can be further refined to machine code.

Special features of Accelerator include provision for developing sideways
ROMs from BASIC programs. When a program is compiled to machine
code, Accelerator offers the option of producing a special sideways ROM
format file which can be blown into an EPROM or loaded into sideways
RAM. Once the ROM is installed, the program in it can be run with a
*command of your choice.

9

The Accelerator package comprises this manual, a quick reference card, two
ROMs and a disc. The two ROMs contain the BASIC to G-code compiler
and the G-code interpreter. The disc contains the machine code converter
module and some associated utilities.

The Accelerator system requires OS 1.2 or later. It is designed to mimic
BASIC II (users with BASIC I will find that OPENIN is treated as OPENUP
and the OSCLI statement is not accessible). The disc or Econet system (or
another filing system which allows three files to be open at the same time) is
required by the machine code converter module, although both the G-code
compiler and interpreter make provisions for tape users. Accelerator works
with and takes advantage of the 6502 second processor and HIBASIC.

10

2. Sample session

This section leads you through a sample session with Accelerator, covering
compiling a BASIC program into G-code and converting the G-code
program into machine code.

First ensure that the computer is in BASIC, if necessary by issuing a
*BASIC command, then type in the following program:

10 MODE4  
20 VDU 29,640; S 12; 30 TIME=0  
40 FOR Radius%=100 TO 10 STEP ‐10 
S0 PROCcircle(Radius%)  
60 NEXT Radi us%  
70 PRINT TIME  
80 END  
90  
100 DEFPROCcircle(Radius%) 
110 LOCAL Xco%,Yco%,Di ff% 120 Xco%=0  
130 Yco%=Radius%  
140 Diff%=3‐2*Radius%  
1S0 IF Xco%>=Yco% THEN GOTO 200 
160 PROCref lect (Xco%,Yco%)  
170 IF Diff%<0 THEN Diff%=Diff%+4*Xco%+6 ELSE 
Diff%=Diff%+4*(Xco%‐Yco%)+10:Yco%=Yco%‐1 180 
Xco%=Xco%+1  
190 GOT0150   ____  
200 IF Xco%=Yco% THEN PROCref lect (Xco%, Yco%) 
210 ENDPROC  
220  
230 DEF PROCref lect(Xco%,Yco%) 
240 LOCAL Xfact%,Yfact%  
2S0 FOR Xfact%=‐1 TO 1 STEP 2 
260 FOR Yfact%=‐1 TO 1 STEP 2  
270 PLOT 69,Xco%*Xfact%*4,Yco%*Yfact%*4 
280 PLOT69,Yco%*Yfact%*4,Xco%*Xfact%*4 
290 NEXT Yfact%,Xfact% 
300 ENDPROC  

11

Execute the program by typing RUN. It will draw a series of different sized
circles centred on the middle of the screen. when the program finishes, note
down the time taken (typically 21 seconds).
To compile the program, type *ACCELERATOR, or a suitable abbreviation.
Accelerator will respond by printing its name, a copyright message and a
prompt:

>*ACCEL. 
ACCELERATOR  
 
(c) 1985 Computer Concepts  
 
Source filename : 

Press the RETURN key. Accelerator will then issue another prompt:

Object filename:  

Press the RETURN key again and Accelerator will compile the program.
As it does so, it prints the final line number of the program three times.
After compilation, the G-code version of the program will be stored in
memory along with the original BASIC program.
Accelerator will then ask you if you wish to run the compiled program:

Execute program (Y/N) : 
 
Press the RETURN key again, which in this context is taken as meaning
'Y' or 'yes'. (Pressing 'N' would drop you straight back into BASIC without
running the program).
Accelerator responds by printing:

G‐CODE INTERPRETER 

and then running the G-code version of the program. When the program
has finished, compare the time taken with the original timing under
BASIC. A typical reading is 11 seconds.
The G-code interpreter will then issue the prompt

Re‐execute (Y/N): 
Pressing the RETURN key or 'Y' will re-execute the program and pressing
'N' will return you to BASIC. Notice that an OLD command is

12

automatically given as soon as BASIC is re-entered, which restores the
original BASIC program.
The method used above can be summarised into this golden rule:
To compile and execute a program, enter
Accelerator and press the RETURN key three
times.
Using Accelerator in this way makes it act rather like a supercharged version
of the RUN command of BASIC since no disc or tape accesses are required,
and the actual compilation is virtually instantaneous.
The speed increase gained in this way can be bettered by converting the G-
code program to machine code using the machine code converter and then
running the machine code. The machine code converter will not run on
cassette, but the programs it generates will.
When you drop back into BASIC after running the program, the original
BASIC program is still present. You can verify this by LISTing it.
First, save the program on disc, calling it ORIGNL. The next step is to
compile it to G-code again, but this time to save the resulting program on
disc. The following dialogue shows how to do this:

>*ACCEL. 
ACCELERATOR 
 
(C) 1985 Computer Concepts  
 
Source filename:ORIGINAL 
Object filename:GCODE  
 
300 
300  
300  
 
Execute program (Y/N):N  
 
BASIC  
>OLD  
> 
  
Next, invoke the machine code converter itself. Type:

*RUN "CONVERT" 

13

 
The converter will clear the screen and print:

MACHINE CODE CONVERTER 
  
G‐code filename:  
 
Type the filename GCODE. The converter will then ask for the:

Library filename:  
 
Type the filename L3&1900. The converter will then print:

Machine code filename: 

Enter MCODE. The converter will come back with:

Sideways ROM format (Y/N):  
 
Press the 'N' key.
The converter will then set about converting the G-code program called
GCODE into a machine code program called MCODE. This will take about a
minute.
At the end of the process it will print:

Execute program (Y/N):  
 
If you press 'N', the system drops back into BASIC, but pressing 'Y' or the
RETURN key will load the machine code back off the disc and execute it.
Under machine code, the program takes about six and a half seconds to run.

14

3. G-code theory

Accelerator is a tool like any other; to make effective use of it, it helps to
understand a little of how it works. This section covers the theory behind
the G-code system and explains why a G-code program is faster than the
original BASIC prig-ram. By understanding this, you can judge what speed
increase to expect for a particular program and write programs, or modify
existing ones, in such a way that a good speed increase is obtained.
As mentioned in the introduction, it is useful to think of G-code as being a
sort of mega-machine code. It is designed so that most fundamental BASIC
operations can be implemented with a single G-code. This means that the
G-code form of a given BASIC program is small compared with the
machine code form and not much bigger than the original BASIC version.
The only slight problem with G-code is that the BBC Microcomputer is
not designed to directly execute programs written in it. Instead, part of one
of the Accelerator ROMs contains a 12K machine code program called the
G-code interpreter. The interpreter 'executes' G-code programs by reading
G-codes one at a time from the program and acting upon them. Since G-
code was designed to be executed in this way, the process is efficient.
There are several fundamental differences between G-code and BASIC, and
it is these differences that make G-code faster. The most important one is
that variables are not referred to by their names, but by the address in
memory where they are stored. For example, every time you refer to the
variable AREA% in a BASIC program, the BASIC interpreter has to search
through an internal list of all the variable names in use to discover the
associated value of the variable. This time-consuming process would have
to be repeated a thousand times if the variable were referenced inside a loop
of a thousand iterations. With G-code programs, this conversion process is
carried out once and for all when the program is compiled. Thereafter
when the program is executed, the G-code interpreter knows precisely
where to find the value of AREA%. To extend our example, take a statement
such as SPACE%=SPACE%+AREA%. The only actual computation taking
place is an addition. In BBC BASIC the addition itself takes a tiny
percentage of the total time required by the statement, because it takes
much longer to find the addresses of the variables and to retrieve their
values. Under G-code, the actual addition is no faster but there is no
overhead in finding the addresses of the variables and hence the whole
statement is executed much faster. One benefit is that since variable names
themselves do not exist in G-code programs, there is no speed or space
penalty for using long ones. You can demonstrate this easily with a short
program written using long variable names and the same program written

15

using single character variable names and comparing the running times
reported by BASIC and G-code. Since REM statements and spaces are also
weeded out when conversion to G-code takes place, the compiler makes it
possible to write readable, well-documented programs that execute at a
respectable speed.
The performance of G-code in graphic applications is subject to a similar
effect. Since both G-code and BASIC use the operating system for all
graphic operations, G-code cannot offer an appreciable speed increase for
raw graphics statements like MOVE, DRAW and PLOT. Instead, its speed
advantage has to be gained from speeding up the calculations leading to the
actual drawing. For example, a BASIC graphics program taking thirty
seconds to run may spend 15 seconds of that time calling operating system
routines to draw the actual graphics. This means that there is no possible
way for Accelerator to increase the speed of the program by more than
50%. In real life, the program will probably only run in 70% to 80% of the
original time.
A problem with BASIC is that numbers in programs are stored as strings, in
exactly the same way as they are typed. Before a number can be used in a
computation, it has to be converted into an internal binary form. Normally,
this conversion is carried out every time a given number is required, so that
in a statement like IF G%>147 THEN GOTO 400 the string "147" has to
be converted into the number 147 every time the statement is executed.
With the G-code compiler, all the numbers in a program are converted to
binary at compilation time. Since converting numbers from strings to binary
is quite slow, this preconversion provides an important part of the overall
speed increase offered by using G-code.
When BBC BASIC executes a GOTO or GOSUB statement, it searches
through the text of the program from beginning to end until it finds a line
with the correct line number. This is fine if the line is near the start of the
program, but becomes increasingly slow as the program gets longer and the
line gets nearer the end of it. In G-code programs, on the other hand, the
destinations for GOTOs and GOSUBs are given as the actual addresses where
control should resume. It should be clear that the speed increase gained by
this particular dodge depends upon the length of the program. This is a
common feature of many of the speed improvements offered by G-code.
Many trivial programs show a trivial increase of speed when executed in G-
code. As programs get longer and more complex, so BASIC becomes
increasingly inefficient while G-code becomes more and more of an
improvement.
This only scratches the surface of the ways in which G-code gains an
advantage over BASIC; most of others are rather more subtle and don't
make a very noticeable improvement on their own.

16

There are, of course, a few disadvantages to using G-code. It is impossible
to directly debug a G-code program, since you cannot print the values of
variables after an error, nor can you use TRACE or even edit the program.
The intention is that the debugging of a program should take place before
you compile it. If an error occurs in a G-code program, an error report will
be given in the same way as BASIC. At this point you should revert to the
original BASIC program and try to recreate the error and debug from there.
When the error has been removed, you can re-compile. The other side of
the coin is that by going back to the original BASIC program for
debugging, you will be able to take advantage of your REM statements and
long variable names.
An important conclusion to draw from all this is that the dodges often used
by BASIC programmers to try to increase the speed of programs will not
always result in faster G-code programs. For example, in heavily executed
loops, it is common practice to replace a numeric constant (such as
12.347282) with a variable with the same value. This can often yield quite a
dramatic speed increase. Under G-code, both representations will run at
approximately the same speed.

17

4. G-code compiler
restrictions

This section covers the restrictions imposed by the G-code compiler. Most
of them are keywords and features that have not been implemented, either
because they are inappropriate in a compiler or because they are impossible
to compile. Three keywords are used slightly differently, or have different
effects.
The keywords not implemented are LOMEM, PAGE, TOP, EVAL, 
TRACE and assembly language and the keywords used differently are FN, 
RND and CHAIN. The rest of this section is devoted to an explanation of
why these differences occur, which should soften the blow and help you to
remember what the differences are.
Under BBC BASIC, LOMEM points to the start of the area used for variable
storage. The intention is that by altering LOMEM and HIMEM, you can
change the area of memory used for variable storage, allowing sophisticated
programmers to make room in memory for their own devices. Under the
compiler, however, the addresses of all variables are fixed at the time of
compilation. Thus, it is not possible to alter LOMEM in a compiled
environment. On the other hand, HIMEM is implemented entirely normally,
which permits you to move the top of the area used for string storage and
arrays, which in many circumstances will achieve a similar effect.
PAGE is not implemented because every G-code program is tied to its own
particular starting address, which can only be altered using the relocation
utility. Since the G-code interpreter automatically moves programs to the
correct address before attempting to run them, PAGE is just not needed.
TOP is not implemented for a slightly different reason. The internal
organisation of G-code programs is radically different from that of BASIC
programs, to the extent that there is no direct equivalent of TOP.
EVAL is used to 'work out' a string as if it were an expression. For example,
in BBC BASIC you can write PRINT
EVAL("short*45.67") and the computer will respond with 45.67 times
the variable short. Under the compiler, variable names are lost after
compilation which makes it impossible to know at execution time which
variable short refers to, let alone its value. Thus it is not possible to
implement EVAL in a compiled environment. However, the most common
use of EVAL is to permit hexadecimal numbers to be used in response to
INPUT statements, as in:

18

16370 INPUT "Address:"A$:ADD%=EVAL(A$) 

This usage of EVAL is not needed under Accelerator, since the INPUT
statement and the VAL function have been extended to allow hexadecimal
numbers to be entered directly. The example above could therefore be re-
written as:

16370 INPUT "Address:"ADD% 

Under BBC BASIC, TRACE works by printing every line number
encountered as the program progresses. Since this slows down programs, it
has not been implemented. As mentioned previously, the intention is that a
program will have been debugged before it is compiled, which makes
TRACE unnecessary .
The reason the compiler does not handle assembly language is rather more
complex. Assembly language has been implemented in BBC BASIC by
including an assembler as part of the BASIC interpreter. So, at first sight,
the solution is to include an assembler in the compiler. While this is
possible, it could not be done in a way that is compatible with BBC
BASIC. For example, consider the assembly language instruction JSR 
OSBYTE. At compile time, the value of the variable OSBYTE is not known
(although its address is), so the statement cannot be fully assembled. The
next solution would be to defer the assembly until the compiled program is
executed. This is actually feasible, but pointless for most applications. For
example, suppose you have written a program in BBC BASIC assembly
language. Normally, you just run the program to assemble the code and
then use the CALL statement to execute it. Under the compiler the
sequence of events would be to compile the original BASIC program
containing the assembly language, then to run the G-code version of the
program and then to execute the machine code with CALL. It is possible
that the G-code interpreter could assemble code quicker than BBC BASIC
(but not much), but it would add the overhead of compilation to the whole
process of assembly.
The solution is to assemble machine code subroutines with BBC BASIC in
the normal way, and then to load and run the machine code from BASIC
or G-code.
It may not be immediately obvious that BBC BASIC commands such as
LOAD, SAVE and RENUMBER are not implemented for the simple reason
that they are not permitted to appear in programs, but can only be used in
immediate mode. Since immediate mode is inn applicable to the compiler,
there is no need for any commands to be handled.

19

The first statement implemented slightly differently by the compiler is
CHAIN. Under BBC BASIC this statement loads a BASIC program to the
current value of PAGE and executes it. Under the compiler this statement
loads another G-code program and runs that. The new program will be
moved to the correct execution address before being run, so there is no
need to set PAGE in advance (even if it were possible to do so ...).
There is much scope for confusion in the way RND is handled. The problem
occurs because under BBC BASIC the function sometimes returns an
integer result and sometimes a real result, depending upon its argument.
Under the compiler it behaves as follows:

1. RND with no argument returns a random 32 bit integer in the normal
way.

2. RND(0) returns the last random number generated as a real number
between zero and one. This is only true if the argument is the number
zero, and not an expression or variable with the value zero.

3. RND(something) , where 'something' is a variable or expression (but
not a number) that turns out to be zero at execution time, returns the
most recent random number as a 32 bit integer. Thus, PRINT RND
followed immediately by X=0:PRINT RND (X) will print the same 32
bit integer..

4. RND(1) , where 1 is a number and not a variable or expression, returns
a real random number between zero and one.

5. RND(something) , where 'something' is a variable or expression (but
not a number) that evaluates to one at execution time, returns a random
number between zero and one as an integer. For reasons that should be
clear, this will always be zero.

6. RND(something), where 'something' is a variable, a number or an
expression that evaluates to be greater than one will return a random
integer between one and the argument in the normal way.

7. RND(something) , where 'something' is a negative variable, number
or expression, will reseed the random number generator in the normal
way.

The compiler handles user defined functions and procedures normally, with
one exception. When you are calling a user defined function, if it will
return a string result (as opposed to a numeric one), you must add a $ to the
end of the name of the function at each point in the program where it is
called. You must not add the $ to the name at the definition. A partially
complete program might be:

20

450 PRINT FNyesno$ 
‐ 
‐ 
1000 DEF FNyesno 
1010 LOCAL key$ 
1020 key$=GET$ 
1030 IF key$="y" OR key$="Y" THEN="YES" 
1040 IF key$="n" OR key$="N" THEN="NO" 
1050 GOTO 1020 

If you don't include the $ in the name, a Type mismatch error will be
given when the function call is executed.
The reason you have to do this is so that the compiler knows what type of
result to expect from a function.); a function is called and there are no
symbols after the name. the compiler assumes the function is going to
return a real result. If a $ is included at the end of the name, the compiler
assumes the result is going to be a string. If a % is used, it assumes the result
will be an integer. Most of the time, the % is optional, since the compiler
can automatically convert between integer and real results as necessary. For
example:

260 PRINT A% EOR FNexample 
‐ 
‐ 
1000 DEF FNexample  
1010 LOCALA%,B% 
‐ 
‐ 
1500=A%+B%+NORM%  
In this case, the function returns an integer result. Line 260 includes a call
to the function, specifying that a real result is expected. When the program
is run, the function will be called, yielding an integer result. The integer
will then be converted to a real number. This is so that the function returns
the real result specified in line 260. In this example, the result will then be
turned back into an integer, so that it can be used as an argument to EOR.
Thus, in this example, using the % would have saved quite a bit of time by
removing the need for all the conversion. On the other hand, omitting it is
not very serious, since the program will still run.
One further potential problem arises because the compiler . extracts the
names of variables used in a 'program in the second pass by looking out for
statements which define variables. If a variable is defined which it has not

21

already logged, it adds it to its list. This only becomes a problem when a
variable is used in a program that is only defined once, and that is in an IF 
statement like this:

IF value=target flag=TRUE  

No problem arises if the word THEN is included, or if f lag is also defined
elsewhere (e.g. in a LOCAL statement). If a variable such as this occurs in a
program, the compiler will give a No such variable error when it
comes to it on the third pass. The solution is to include the word THEN.
A couple of brief points:
The INSTR bug of version 1 of BBC BASIC does not occur in Accelerator.
All REM statements are weeded out of programs at the compilation stage,
and so do not add to the bulk of programs.

22

5. Using the G-code
compiler and interpreter

The G-code compiler is at the heart of the Accelerator system. This section
explains in rigorous detail how it and the G-code interpreter are used to
compile and execute G-code programs. It also covers using the relocate
utility to change the address of a G-code program.
The G-code compiler is invoked with the *ACCELERATOR command. An
abbreviation can be used, but beware of the similarity with the disc filing
system command *ACCESS. You may find it useful to put the two
Accelerator ROMs in higher priority sockets than the disc filing system,
which should permit you to use the ultimate abbreviation *A.. The
disadvantage of doing this is that it forces you to use the full
*ACCESS command. The G-code interpreter is invoked with the command
*GRUN. This can often be abbreviated to simply *G..
Throughout both programs the terms 'source' and 'object' program are used.
The source program is the BASIC program that is to be compiled, while
the object program is the G-code program generated from the source
program.
The G-code compiler takes a source program and translates it into the
equivalent object program, while the G-code interpreter is used to execute
an object program. The complicating factor in using the two programs is
that the source and object programs may be taken directly from memory or
from disc/cassette.
When you enter the G-code compiler, it will print:

ACCELERATOR 
 
(c) 1985 Computer Concepts 
 
Source filename:  

Here it is prompting you to enter the name of the program you wish to
compile. If the source program is on disc or cassette, you should enter the
filename and press RETURN. If the program is already in memory, just
press RETURN. in the latter case, the compiler will look for the program
at the default value of PAGE for your machine (generally &1900 for disc
based. machines and &E00 for cassette based machines). This means that it
is impossible to compile a program stored at any other PAGE address. (You

23

can change the default PAGE address by using *FX180 , n followed by
*BASIC, where n is the address you want divided by 256. This will not
work on the 6502 second processor)
There is a further option in response to this prompt. If you type an
operating system command beginning with an asterisk, the compiler will
execute the command and then re-issue the prompt. For example, if you
cannot remember the filename of the source program, you can give a *CAT
command to get a disc catalogue and read the filename from there.
After you have entered the source filename, the compiler will ask you for
the object filename in a similar manner. This is the filename under which
the G-code program will be saved. You can either enter the filename and
press RETURN, or, if you do not wish to save the object code, just press
RETURN. The advantages of saving the object code are that it enables you
to re-execute the program at a later date without the need to re-compile it
and it allows you to feed the object code through the machine code
converter.
After this information has been entered, the compiler starts to do the actual
compilation. To do so, it scans through the source program three times. As
it goes through, each line number encountered is printed on the screen
over the previous one. The end result is that the final line number of the
program is printed three times, once for each 'pass' over the source
program. If you are using the cassette filing system, the compiler prompts
you with either Play: or Record: followed by the filename to be used.
When the appropriate controls have been set on the cassette recorder, press
any key (except BREAK or ESCAPE) and the compiler will start to read or
write the file in question. The source program will be read in three times,
and the object code written out once.
If the source program is 'bad' or any other error occurs (such as ESCAPE
being pressed in the middle of compilation), the compiler prints an error
message and drops you back into BASIC (or attempts to - more on this
later).
Internally, the compiler builds the object program on top of the BASIC
program at the default PAGE value. If the source program is being read from
disc or cassette, the compiler first constructs a BASIC program at the default
PAGE value by carrying out a NEW operation.
When the program has been successfully compiled, the compiler
issues the prompt:

Execute program (Y/N): 

Pressing 'N' will re-enter BASIC, while pressing 'Y' or RETURN will
enter the G-code interpreter to run the program.

24

A word about returning to BASIC: both the compiler and interpreter
return you to BASIC when they have finished. To do this, they use an
internal OSBYTE call (number 187) to establish the ROM number of the
BASIC ROM. This is fine, unless you don't happen to have a BASIC
ROM in your machine. In this case, the compiler issues the message No 
BASIC ROM and prints an * prompt. You can then enter any number of
operating system commands, the ultimate intention being that you will
enter some other language in preference to BASIC.
If the G-code interpreter is entered with *GRUN it issues the prompt:

Object filename:  

It expects you to type the name of the G-code program you wish to
execute. If the program is on disc/cassette, you can enter the filename
directly. If you press RETURN without entering a filename, the
interpreter looks for a G-code program above the BASIC program at the
default value of PAGE. This option is used, bypassing the prompt, if you
enter the G-code interpreter directly from the compiler. If there is no
BASIC program present, or no G-code program above it, the interpreter
issues the appropriate error message and attempts to drop back into BASIC.
If the object program is to be read from cassette, the interpreter will prompt
you to Play: the relevant filename and wait for you to press a key to
signify that you have done so.
It then attempts to execute the program.
When the program has finished, or after an error has occurred, the
following prompt is given:

Re‐execute (Y/N):  
Pressing 'N' returns you to BASIC, while 'Y' or return will re-execute the
program.
When using the G-code interpreter you should be aware of the fact that
every G-code program is designed to be loaded and executed at a particular
address in memory. This address is the top of the BASIC program upon
which the compiler built the program. In order to run a G-code program
loaded from disc or cassette, the interpreter may need to move it from
where it loaded it to the address required for running it. A problem arises
when the 6502 second processor is used, since the default value of PAGE
drops to &800 on this machine. In this case, it is quite possible that the
compiler will construct the object code to start at an address like &802 if
the source program was read from disc/cassette. If you then try to run this
object program on the I/O processor, the interpreter will load the program
and then attempt to move it down in memory to &802. When the program

25

is run, it will sooner or later crash, since it is situated right where the
operating system has its workspace. The solution is to use the relocation
program, described below, to move the object program to a new address.
Note that this problem will only arise when a second processor is being
used.
You can discover the address at which a given G-code program is designed
to run using the following short program:

10 INPUT"Object filename:"FILE$  
20 HANDLE%=OPENIN(FILE$) 
30 ADDRESS%=BGET#HANDLE%+256*BGET#HANDLE% 
40 CLOSE#HANDLE%  
50 PRINT"Start address is";~ADDRESS%  

The object code relocation program is supplied on the same disc as the
machine code converter module. It takes a given object program and
converts it to run at a new address. The most common use of it is to enable
programs compiled on the second processor to be run on the I/O processor
and to make programs on disc based machines run at &EOO. In the latter
case, the program will be loaded at the normal default PAGE address and
then moved down to &EOO. Since this overwrites the disc workspace area,
you will not be able to use the disc system again. It is therefore advisable to
make *TAPE the first statement in such a program, to ensure against
accidental use of DFS commands, which would erase the program.
To use the relocate program, insert the utility disc and type
*RUN RELOC. The program will prompt first for the filename of the object
program to be changed, the new filename to be used for it and the new
address required. For example:

>*RUN RELOC  
G‐CODE RELOCATOR 
 
Object filename:GCODE  
New object filename:GCODE2 
Newaddress:&E00 
>  

26

6. Machine code converter
theory

The machine code converter can be used to further increase the speed of
G-code programs by converting them into 6502 machine code. It does this
by intelligently substituting one or more machine code instructions for each
G-code instruction in the object program.
The advantage of converting to machine code is that it increases the speed
of the program by removing the need to individually interpret each G-code
instruction. The main disadvantage is that conversion to machine code
often makes a program three or four times larger than the original BASIC
program.
Many G-code instructions are substituted by a few 6502 machine code
instructions, but some of the more complex ones are implemented as
subroutines. In this case a JSR instruction is used whenever the G-code
occurs. All the subroutines required in this way are kept in a file called a
'library' which the converter incorporates into every program it generates.
In order to provide all the routines that could be required, the library can
be as big as 6K. However, if a program uses only a few of the subroutines, it
can use one of the smaller libraries supplied on the utility disc.
Thus, the machine code converter combines a direct machine code version
of the G-code program with a library of subroutines to produce the final
program. The advantage of this approach is that since the library is
integrated into the machine code program, the finished program can be run
on a machine not equipped with Accelerator.

27

7. Machine code converter
restrictions

Like the G-code compiler, the machine code converter will only translate
certain parts of BBC BASIC. The restrictions include those imposed by the
G-code compiler, with some new ones added. This section describes those
extra restrictions.
The most significant difference is that the machine code converter will not
translate real arithmetic. This means that you cannot use real variables (like
ANSWER=RESULT) nor can you include real calculations in an expression,
like A%=B%/5 (in this case you would use DIV instead of /). It follows that
functions that use or give a real result are either not translated or are treated
differently. The complete list of banned functions is:

ACS, ASN, ATN, COS, DEG, EXP, INT, LN, LOG, PI, R AD, 
SIN, SQR and TAN.  

The RND function can always be translated, except when RND(0) or
RND(1) is used, which gives a real result and hence cannot be translated.
Using RND with a variable argument equal to one or zero is permissable, but
the result will De rounded down to an integer in the same way as under the
G-code system.
The second significant difference arises out of the fact that BBC BASIC
normally stores integers in four bytes or 32 bits, whereas the machine code
converter uses two byte or 16 bit integers. This reduces the range of
integers from +/- 2,147,483,647 to +/- 32,767. This can create problems
in situations where a given expression (such as 100*100) can be stored as
an integer _ under the G-code system or normal BBC BASIC, but will
overflow under the machine code converter.
Advanced BASIC programmers might wish to refer to addresses above
&7FFF. To do this you need to know how negative numbers are
implemented internally by the machine code converter. Since it uses 16 bit
integers, the actual range of values is zero to 65,535. To make provision for
negative numbers, the convention is that numbers over 32,767 are treated
as though they were negative. For example, 65,535 is treated as -1, 65,534
as -2 and 65,525 as -10. The reverse relationships are also true -the value -1
is stored as 65534 etc. Thus, you can access addresses above 32767 using the
formula 'new-address=old-address-65535'. For example, the address of the
6845 video controller in the I/O processor (normally written as &FEOO)

28

comes out as -511. When hexadecimal numbers over &7FFF are entered,
this conversion is carried out automatically. This means that PRINT &FE00
would actually print -511. So, in essence, you can access the top half of
memory by writing the address in hexadecimal. It is important to be aware
that this provision is really only a trick, and so must be used with care.
There is a nasty side effect of all this when the ADVAL function is used to
read analogue values. It normally returns a positive 16 bit value. Under the
machine code Converter, any values over 32767 will appear to be negative.
The only way around the problem is to use a function like this:

DEF FNadval(Channel%) 
Result%=ADVAL(Channel%) 
IF Result%<&7FFF THEN=Result% DIV 16 
ELSE=4095+Result% DIV 16  

Using this function, ADVAL returns a 12 bit value from zero to 4,095. Since
this is actually the internal accuracy of the device, nothing but speed is lost
by using this patch. If you are concerned about speed, the only solution is
to write a machine code version of the function definition above.
A similar problem occurs with USR. Normally, the four bytes of the integer
returned by USR contain the contents of the four 6502 registers after
returning from the machine code subroutine. Since the value returned by
USR can only be two bytes in machine code, you may well have to extend
machine code subroutines to return results in some other way. The most
significant of the two bytes contains the X register and the least significant
contains the accumulator. This is the same as the lower two bytes of the
standard USR call.
Both BBC BASIC and the G-code system store the resident integer
variables in the same place (page four of 6502 RAM). This allows
communication between programs in the two languages. The machine code
converter stores the resident integer variables in zero page, which makes
them rather faster to access. This difference does not present any problems
except when transferring values between programs by using the resident
integer variables. (The way around the problem is to use the ! operator in
the machine code program to extract the variable values directly from
memory).
CHAIN operates slightly differently; it has been implemented to operate in
the same way as the operating system *RUN command. This allows it to be
used for chaining between machine code programs.
As discussed in the section on G-code restrictions, Accelerator assumes a
user defined function is going to return a real result unless you append a%
or a$ to the end of the function name when you call it. Since the machine

29

code converter can not cope with real arithmetic, functions can only return
integer or string results. Thus, you MUST append one or other of the
symbols on the end of each function name as it is called.
GOSUB and GOTO may not be used with computed destinations or in an
ON...GOTO/GOSUB construction.
The ESCAPE key is handled slightly differently in the machine code
converter. In BASIC and G-code the system checks whether the ESCAPE
key has been pressed after executing every statement or G-code. In the
machine code system, this would entail riddling the program with
instructions to check the ESCAPE key. Instead, it is turned off with
*FX229 just before the main program is run and turned back on before
returning to BASIC at the end of the program. This means that if you want
to write a program that can be interrupted with ESCAPE you'll have to
check for it yourself:

10 *FX 229,0 ‐ Turns the ESCAPE key back on 
20 REPEAT  
30 PRINT "Escape hasn't been pressed yet" 
40 UNTIL (?&FF AND &80)  
50 *FX124  
60 PRINT "Escape has been pressed"  

The reference to location &FF reads the ESCAPE key flag'. Strictly
speaking, it is not considered good practice to do this, but all Acorn BBC
Micro BASICs do it and it works on the tube.
Although this method is slightly laborious, it does afford a degree of
protection by allowing you to choose when and where you want to check
for ESCAPE.
Error handling itself is also rather different under the machine code
converter. After the program has been converted, all line number
information is lost. This means that when an error does occur, the
computer cannot discover what line caused the error. Instead, it just prints
the error message itself and then stops. You then have to work out
whereabouts the error occurred yourself. You can do this by seeing how far
the program got before it stopped, either by examining the screen or any
files the program may have created. As a last resort, insert lines like PRINT 
"This is line 27640" around where you suspect the error to be.
Then re-convert and re-execute the program. You can then start to narrow
down the cause of the error. If the error also occurs in the G-code or
BASIC version of the program, you would be better off trying to debug
that. Generally, the only reason a program might not work under the
machine code converter even if it works perfectly under the G-code system

30

is that you have failed to take into account the differences between G-code
and machine code.
In view of the above, the function ERL is not implemented. Some of these
restrictions lead to very subtle problems which are not reported by the
converter. For example, when the author was testing Accelerator, he tried
to translate a program that contained the following line:

FOR T%=0 TO 1023 STEP 4 
:T%!&7C00=T%!&7800:NEXT  

This line was used to copy a screen full of MODE 7 graphics from a buffer at
&7800 into the actual screen at &7C00. The program operated perfectly
under BBC BASIC and G-code, and seemed to convert to machine code.
The problem was that the screen looked a bit strange. After much head
scratching, the error was pinned down and corrected. Since the machine
code version of ! only works with two bytes at a time, the step size in the
FOR loop should have been only two.
Another typical example would be:

IF (A%+B%)>C% THEN GOTO 4560  

Normally this line will work perfectly. But imagine that A % is 30000, B% is
6000 and C% is 200. This time the program will not work, since A%+B%
computes to 36000. Since this is over 32767, the system treats it as the
negative number -29535 (which is 36000-65535). Thus, the > operator will
report an incorrect result, possibly causing havoc. In this example, the error
message, if any, will probably occur miles away from the line in question,
making it very difficult to track down.
Problems like these can be difficult to solve if you are not familiar· with the
internal operation of the program under conversion. It really is just a matter
of acquired skill.

31

8. Using the machine code
converter

The first stage in using the machine code converter is to decide which
library to use. This decision is based on two criteria: the address where you
want the finished code to be run and the complexity of the program under
conversion.
Under normal circumstances, the address you choose to run the code at will
be the default PAGE address for your machine. Typically, on a cassette based
BBC Micro this will be &E00, rising to &1900 when discs are installed and
dropping back to &800 if a second processor is being used. Using the
default PAGE address gives you the maximum space for the code. You may
wish to generate code for a slightly higher address to leave space for
machine code subroutines, or data storage. The address must be a multiple
of 256, like PAGE.
The complexity of the program under conversion affects the choice of
library because simpler programs can save space by using a smaller, pared
down, library. The standard level 3 library supports the following:

*commands, ABS,ADVAL,ASC,BGET,BPUT#,CALL,CHR$,CLEAR, 
CLG,CLOSE#,CLS,COLOUR,COUNT,DATA,DEF,DIM,DRAW,END, 
ENDPROC,ENVELOPE,EOF#,ERR,EXT,FALSE,FN,FOR,GCOL,GET, 
GETS,GOSUB,GOTO,HIMEM,IF,INKEY,INKEY$,INPUT, INPUT#, 
INSTR,LEFT$,LEN,LET,LOCAL,MID$,MODE,MOVE,NEXT,ON ERROR, 
OPENIN,OPENOUT,OPENUP,OSCLI,  
PLOT,POINT,POS,PRINT,PRINT#,PROC,PTR#,READ,REPEAT, 
REPORT,RESTORE,RIGHT$,RND,SGN,SOUND,SPC,STOP, STR$, 
STR$~,STRING$,TAB,TIME,TRUE,UNTIL,USR,VAL,VDU,VPOS and 
WIDTH. 
 
!,?, *, ‐, +, DIV, MOD, EOR, AND, OR, NOT, <, >, =, <>, 
<= and >=  

32

The next level down, level 2, supports everything in level 3, except:

INSTR, STRING$, READ, DATA, RESTORE, PRINT#, INPUT#, 
PROC, FN, DEF, ENDPROC, LOCAL  
The lowest level only supports the following:

*commands, ABS, ADVAL, CALL, CLEAR, CLG, CLS, COLOUR, 
DIM, DRAW, END, ENVELOPE, ERR, FALSE, FOR, GCOL, GET, 
GOSUB, GOTO, HIMEM, IF, INKEY, LET, MODE, MOVE, NEXT, 
ON ERROR, PLOT, POINT, POS, PRINT, REPEAT, REPORT, RND, 
SGN, SOUND, SPC, STOP, TAB, TIME, TRUE, UNTIL, USR, 
VDU, VPOS and WIDTH. 
 
!, ?, *, ‐, +, DIV, MOD, EOR, AND, OR, NOT, <, >, =, 
<>, <= and >= 

N.B. Strings are not supported in level 1.
Level 3 - approximately 6K long
Level 2 - approximately 4.5K long
Level 1 - approximately 3K long
The choice comes down to choosing the lowest level that still supports all
the features you need. Although the level 3 library may seem big at 6K
long, under many conditions you can at least start off using it, only
switching to one of the lower level ones if memory becomes a problem.
Having selected the target address and the library level required, combine
the two into a single filename. For example, a level 2 library for a target
address of &1900 would become L2&1900.
Then catalogue the utility disc and see if a file of the correct name is on the
disc. If the file is present, you have picked one of the pre-defined libraries.
Otherwise, you'll have to create the library.
To create a library, run the program called LIBGEN (which is on the utility
disc along with the machine code converter):

CHAIN "LIBGEN"  

The library generator will prompt you for the address and level of the
library you require, followed by the drive number where the finished
library should be stored .
The library generator will then construct the library from the existing
libraries on the disc.
Having obtained the library file you require, you can run the machine code
converter:

33

*RUN "CONVERT"  

The computer will respond with:

MACHINE CODE CONVERTER 
G‐code filename:  

Here, type the filename of the G-code program to be converted. The
computer will then ask for the

Library filename:  

Enter the filename of the library you selected. The computer will respond
by asking you for the

Machine code filename: 

This is the filename it will use to save the machine code. Enter a suitable
filename and press RETURN.
The computer will finally ask:

Sideways ROM format (Y/N): 

For the moment, press 'N'. The machine code converter will then start
work. When it has finished, it will ask

Execute program (Y/N):  

Pressing 'N' returns you to BASIC, and pressing 'Y' or RETURN will
reload and execute the machine code.
You can load and run the machine code file with a *RUN command
followed by the filename.
Advanced programmers can also execute machine code programs as
subroutines from other environments. In this case, end the program with
another RETURN statement. Then CALL or JSR the start address of the file.
You should be aware that when control returns from the program, zero
page will be totally corrupted. Thus, it is not practicable to execute
machine code programs as subroutines from BASIC, unless they are stopped
with an END statement, which carries out a *BASIC and so restores zero
page.

34

9. Chaining between
BASIC, G-code and
machine code

The CHAIN command in BASIC,G-code and machine code can be used to
transfer control to another program. The problem with CHAIN is that it can
only be used to transfer to a program in the same
language. For example, from a G-code program, CHAIN refers to another
G-code program and from a BASIC program, it refers to another BASIC
program.
There are, however, many circumstances when it is useful to chain between
programs in different languages. For example, consider a program that
draws a graphic pattern. Suppose that the pattern algorithm needs a table of
the coordinates of 36 points on the perimeter of a circle with a radius of
500.
The best way of implementing this program would be to work out the
circle table in G-code or BASIC and then switch to machine code to draw
the actual pattern.
This method calls for two separate programs, which implies that some
means of communicating between them is necessary. The simplest method
is for the first part of the program to lower HIMEM and construct the table in
the space freed. When the machine code program takes over, it simply sets
HIMEM to the same address, and the table is accessible above HIMEM.
In these examples, I have assumed the first part of the program is to be
compiled to G-code, but for a truly independent (of Accelerator) program,
it could be left in BASIC.
Here is a listing of the complete program, starting with the G-code section:

10 MODE4  
20 HIMEM=HIMEM‐36*4‐2 
30 A%=HIMEM  
40 FOR angle=0 TO 359 STEP 10 
50 xdist=SIN(RAD(angle))*500 
60 ydist=COS(RAD(angle))*500  
70 !(HIMEM+(angle/10)*4)=xdist 
80 !(HIMEM+(angle/10)*4+2)=ydist 
90 NEXT angle 

35

100 *RUN MACHINE  
 
The machine code section could be:

10 MODE4  
20 HIMEM=!&404  
30 VDU 29,640;512; 
40 FOR start%=0 TO 35  
50 FOR end%=start% TO 35  
60 MOVE!(HIMEM+start%*4),!(HIMEM+start%*4+2) 
70 DRAW!(HIMEM+end%*4),!(HIMEM+end%*4+2)  
80 NEXT end%,start%  
90 END 
  
The coding in both programs veers on the side of redundancy, which
should help to make the programs slightly easier to understand. Here are
notes on what the individual lines do, starting with the G-code program:
Line 10 clears the screen to MODE 4. This is done because the circle table
has to be accessible when the screen is in MODE 4. If MODE 7, say, were
used for this section, then the table would be built up below the MODE 7
screen. In that case, when the next part of the program cleared the screen to
MODE 4, the table would be wiped.
Line 20 moves HIMEM down to make room for the table. The table has 36
entries, each consisting of a pair of coordinates. Under the machine code
converter, integers only take up 16 bits, so it makes sense to allot only two
bytes to each coordinate, which makes four bytes for a pair of coordinates.
The ‐2 at the end of the line reserves an extra two bytes. This is done
because ! under G-code writes four bytes to memory at a time. Thus,
when the very last coordinate is written to the table, there will be an
'overhang' of two bytes at the end. To prevent the two bytes doing any
harm, they are reserved.
Line 30 sets the resident integer variable A% to the new value of HIMEM.
Line 40 starts a loop through the angles which feature in the table.
Lines 50 and 60 work out the horizontal and vertical component
respectively of the circumference point in question. The formula used is a
standard method for drawing circles. Notice that the circle is based around
0,0 and so some values will be negative.
Lines 70 and 80 put the values into the table. HIMEM is the base address of
the table. (angle/10)*4 gives the offset of the current coordinate pair. In
line 80, the extra +2 specifies the Y coordinate of the pair. It should be

36

realised that line 50 could be combined with line 70 and line 60 with line
80, which would probably be slightly faster.
Line 100 chains the machine code program using the *RUN command.
In the machine code program:
Line 10 clears the screen to MODE 4 again.
Line 20 restores the old value of HIMEM. Since BASIC and G-code's A% is
not directly accessible from machine code, the ! operator has to be used to
get the value directly from the memory location where A% is stored. Note
that this is not strictly good programming practice, but since it works on the
Tube and everything else, it seems permissable to do it.
The rest of the program draws the pattern itself. All it does is to join every
point on the circumference of the circle with every other one, using
straight lines. The resulting pattern is quite pretty. The only useful points in
this section of the program is the way that the circle table is accessed in lines
60 and 70.
To sum up, *RUN can be used to chain from a BASIC or G-code program
to a machine code program.
To chain from a BASIC program to a G-code program, use a section of
code like this:

1000 *KEY 9 "*GRUN|MEXAMPLE|M" 
1010 *FX 21 
1020 *FX 138,0,137 
1030 END  

This example chains to a program called EXAMPLE, but you can change the
program name by altering line 1000. The method used is to prime the
keyboard buffer with the string of commands needed to switch into the G-
code interpreter and execute a given program, and then stop the current
program to let the commands be acted upon in BASICs immediate mode.
Exactly the same method can be used to go from machine code to G-code.
A slight alteration of the same routine will transfer control from a G-code
program to a BASIC program:

1000 *KEY 9 "NCHAIN""EXAMPLE""|M" 
1010 *FX 21 
1020 *FX 138,0,137 
1030 END  

The 'N' at the start of the string in line 1000 answers the Re‐execute 
(Y/N) : prompt given when a G-code program stops.

37

To go from machine code to BASIC, use exactly the same routine, but
leave out the 'N'.

38

10. Developing sideways
ROMs

This chapter describes how the machine code converter can be used to
generate language ROMs from a G-code program.
The BBC Micro supports two types of ROM; language ROMs and utility
ROMs. Utility ROMs provide extra operating system commands to be
used from BASIC or direct from the keyboard. Typical utility ROMs
include Disc Doctor, Caretaker and the Graphics Extension ROM.
Language ROMs, as their name implies, provide new languages. BASIC
itself is a language ROM, as are the two Accelerator ROMs. They don't
have to contain languages - any program can be put into a language ROM.
The machine code converter constructs language ROMs in such a way that
your program can be entered with a simple operating system command. It
outputs the ROM in the form of a file. To use it, you must either load the
file into an EPROM programmer and blow an EPROM from it, or load
the file in 'sideways RAM', as provided by many popular sideways ROM
expansion boards. If you have a second processor, you can load the resulting
file straight into it, and it will be treated as a language.
To generate a sideways ROM, you need to use a library created to work at
an address above &8000. The address &8100 has been found to be ideal.
The library can be any level.
Use the machine code converter normally, until it asks

Sideways ROM format (Y/N):  

Reply in the affirmative by pressing 'Y' or RETURN. The converter will
then ask you for the command to be used to invoke your program:

Invocation command:  

Type a suitable command name and press return. Don't include the asterisk.
You will then be asked to enter the title string. This is the string printed
when the language is entered. For example Accelerator's two ROMs have
the title strings ACCELERATOR and G‐CODE INTERPRETER.

Title string:  

The title string cannot be longer than a single line. The program then asks

39

you for the string it should print in response to the *HELP operating system
command:

HELP message:  

The HELP message must be a single line of text.
Once all this information has been accepted, the system will convert the
program in the normal way. When the process has been completed, you
will not be asked whether you wish to run the code. The only way the
program can be run is to load it into sideways RAM, an EPROM
programmer or the second processor.
To run the language file from the second processor, type *RUN name,
where name is the name of the machine code file. The 'ROM' will be
loaded and executed as a language directly.
Once you have the finished ROM installed in a machine, the program can
be run with the operating system command you specified, regardless of
whether the machine has Accelerator installed.
To do anything more sophisticated with sideways ROMs, the best method
is to produce a normal machine code conversion to run at &8400 (for
example), and then to write a ROM header yourself to fit between &8000
and &83FF. The ROM header can JMP to &8400 to execute the main
program.

40

11. Technical information

This section describes the environment under which G-code and machine
code programs are executed. None of the information in this section is
actually necessary in order to use the compiler under normal circumstances,
but advanced programmers will find it useful for specialist applications.
A word of warning: While we will make every effort to make future
releases of Accelerator compatible with this information, we cannot
guarantee it.
The layout of memory when a G-code program is being executed is as
follows:

Zero page
Locations &00 to &85 inclusive are used by the G-code interpreter. Strictly
speaking, then, only locations &86 to &8F are free for use by machine code
subroutines. However, locations &73 to &85 inclusive are only used to
build up the parameters for SOUND and ENVELOPE statements. Thus, if you
bear in mind that these locations will be altered when a SOUND or
ENVELOPE statement are used, you can use them with impunity for your
own purposes.
This list gives the uses of selected zero page locations:
&00 and &01 - Hold OSHWM They are set with OSBYTE &83 at
initialisation and are not changed afterwards. The interpreter might use
memory below this address if a G-code program needs to be executed at a
lower address.
&02 and &03 - Hold the address of the top of the dynamic variable storage
area. Memory above the G-code program up to the stack pointer is used to
store strings and arrays. These locations hold the address of the next free
location in this area. &04 and &05 - Hold the address of the stack pointer.
This is initialised to HIMEM and moves down in memory.
&06 and &07-Hold HIMEM.
&08 and &09 - Hold the line number of the most recent error.
&00 to &11 - Hold the random number generator seed.
&IE - Holds COUNT.
&23 - Holds WIDTH.
&37 and &38 - Holds the address of the next G-code to be executed.

Pages 4 to 7
Locations &400 to &7FF are used primarily for the purposes outlined
below:

41

&400 to &46B - Hold the values of the resident integer variables. These are
the same locations as BASIC uses, so they may be used to transfer values
between G-code programs and BASIC programs.
&46C to &4BF - Used for temporary real workspace.
&4CO to &4FF - Used primarily for building up control blocks for
operating system calls.
&500 to &5FF - Holds various system stacks. &600 to &6FF - The string
buffer.
&700 to &7FF - Used as a keyboard buffer in the INPUT statement.
When a machine code program is executing, memory is used as follows:

Zero page
&10 - Holds COUNT.
&11 - Holds WIDTH.
&12 and &13 - Hold HIMEM.
&14 and &15 - Hold the stack pointer.
&19 to &10 - Hold the random number generator seed.
&20 to &2F - Used as a buffer by SOUND and ENVELOPE, and thus not used
most of the time.
&38 to &6F - Hold the resident integer variables @% to Z%, with two
adjacent bytes for each variable.

42

Pages 4 to 7
&480 to &4FF - Theoretically used as a buffer for operating s\'stem calls. In
real life, only the first 30 or so bytes will ever be used.
&500 to &55F - Used for various internal stacks.
&560 to &5FF - Not used.
&600 to &6FF - String buffer.
&700 to &7FF - Keyboard buffer.

43

12. Keyword summary

-
G-code: Standard.
M-code all levels: Integer only.

+
G-code: Standard.
M-code level 3: Integer and string only.
M-code level 2: Integer and string only.
M-code level 1: Integer only.

?
G-code: Standard.
M-code all levels: Standard.

!
G-code: Standard.
M-code all levels: Reads or writes two bytes at a time, rather than four.

5
G-code: Standard.
M-code all levels: Not implemented.

*
G-code: Standard.
M-code all levels: Integer only.

/
G-code: Standard.
M-code all levels: Not implemented.

= (when used as an operator)
G-code: Standard.
M-code level 3: Integer and string only.
M-code level 2: Integer and string only.
M-code level 1: Integer only.

44

<>
G-code: Standard.
M-code level 3: Integer and string only.
M-code level 2: Integer and string only.
M-code level 1: Integer only.

<
G-code: Standard.
M-code level 3: Integer and string only.
M-code level 2: Integer and string only.
M-code level 1: Integer only.

>
G-code: Standard.
M-code level 3: Integer and string only.
M-code level 2: Integer and string only.
M-code level 1: Integer only.

<=
G-code: Standard.
M-code level 3: Integer and string only.
M-code level 2: Integer and string only.
M-code level 1: Integer only.

>=
G-code: Standard.
M-code level 3: Integer and string only.
M-code level 2: Integer and string only.
M-code level 1: Integer only.

ABS
G-code: Standard.
M-code all levels: Integer only.

ACS
G-code: Standard.
M-code al1levels: Not implemented.

ADVAL
G-code: Standard.
M-code all levels: See the machine code restrictions chapter.

45

AND
G-code: Standard.
M-code all levels: Standard.

ASC
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

ASN
G-code: Standard.
M-code all levels: Not implemented.

ATN
G-code: Standard.
M-code all levels: Not implemented.

BGET#
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

BPUT#
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

CALL
G-CODE :Standard.
M-code all levels: Standard, except for the use of 16 bit variables. Thus
parameter type 4 (User Guide, P.215) is now a 16 bit integer variable.
Parameter type 5, meaning a real variable, is not implemented.

CHAIN
G-code: Chains another G-code program.
M-code all levels: Chains another machine code program.

46

CHR$
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

CLEAR
G-code: Standard.
M-code all levels: Standard.

CLOSE#
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

CLG
G-code: Standard.
M-code all levels: Standard.

CLS
G-code: Standard.
M-code all levels: Standard.

COLOUR
G-code: Standard.
M-code all levels: Standard.

COS
G-code: Standard.
M-code all levels: Not implemented.

COUNT
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code-level 1: Not implemented.

DATA
G-code: Standard.
M-code level 3: Standard.

47

M-code level 2: Not implemented.
M-code level 1: Not implemented.

DEF (see also FN)
G-code: Standard.
M-code level 3: Standard
M-code level 2: Not implemented.
M-code level 1: Not implemented.

DEG
G-code: Standard.
M-code levels: Not implemented

DIM
G-code: Standard.
M-code all levels: Real arrays not implemented.

DIV
G-code: Standard.
M-code all levels: Standard.

DRAW
G-code: Standard.
M-code all levels: Standard.

ELSE
G-code: Standard.
M-code all levels: Standard.

END
G-code: Standard. Causes a return to the Re‐execute (Y/N) : prompt.
M-code all levels: Standard. Causes a return to BASIC.

ENDPROC
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

ENVELOPE
G-code: Standard.
M-code all levels: Standard.

48

EOF#
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented .

EOR
G-code: Standard.
M-code all levels: Standard.

ERL
G-code: Standard.
M-code all levels: Not implemented.

ERR
G-code: Standard.
M-code all levels: Standard.

EVAL
G-code: Not implemented.
M-code all levels: Not implemented.

EXP
G-code: Standard.
M-code all levels: Not implemented.

EXT#
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

FALSE
G-code: Standard.
M-code all levels: Standard.

FN
G-code: When a function is called, the compiler must be informed what
type you expect the result to be. This is done by appending a % to the end
of the name to indicate an integer result or a $ to indicate a string result. If
neither symbol is added to the name, the compiler assumes you wish the
function to return a real result. When the function returns, the G-code

49

interpreter tries to convert the result to the type you indicated.
For example:

10 PRINT FNanimal$ 
20 END  
30 DEFFNanimal 
40 LOCAL A$  
50 INPUT "Enter an animal:"A$  
60 IF FNnot‐animal%(A$) THEN GOTO 50  
70 =A$ 
 
M-code level 3: See above. Notice that since real numbers are not
implemented, you must always use either % or $ with a function to indicate
whether you want a numeric or string result.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

FOR
G-code: Standard.
M-code all levels: Integer only.

GCOL
G-code: Standard.
M-code all levels: Standard.

GET
G-code: Standard.
M-code all levels: Standard.

GET$
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

GOSUB
G-code: Standard, computed destinations (e.g. GOSUB 
SELECT*1000+5000) are all owed.  
M-code all levels: Standard, except computed destinations are not allowed.

GOTO

50

G-code: Standard. Computed destll1J:lOns (e.g. GOTO 
CHECK*100+6500) are allowed M-code all levels: Standard. (except
computed destinations are not allowed.  

HIMEM
G-code: Standard.
M-code all levels: Standard

IF
G-code: Standard.
M -code all levels: Standard.

INKEY
G-code: Standard.
M-code all levels: Standard.

INKEY$
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

INPUT
G-code: Standard. Extended to allow hexadecimal input.
M-code level 3: Standard. Extended to allow hexadecimal input.
M-code level 2: Standard. Extended to allow hexadecimal input.
M-code level 1: Not implemented.

INPUT#
G-code: Standard.
M-code level 3: Standard. Attempting to read a real number will result in
an error.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

INSTR
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

INT

51

G-code: Standard.
M-code all levels: Not implemented,

LEFTS
G-code: Standard
M-code level 3: Standard
M-code level 2: Standard
M-code level 1: Standard

LEN
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

LET
G-code: Standard.
M-code all levels: Integers and strings only.

LN
G-code: Standard.
M-code all levels: Not implemented.

LOCAL
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

LOG
G-code: Standard.
M-code all levels: Not implemented.

LOMEM
G-code: Not implemented.
M-code all levels: Not implemented.

MID$
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

52

MOD
G-code: Standard.
M-code all levels: Standard.

MODE
G-code: Standard.
M-code all levels: Standard.

MOVE
G-code: Standard.
M-code all levels: Standard.

NEXT
G-code: Standard.
M-code all levels: Integer only.

NOT
G-code: Standard.
M-code all levels: Standard.

ON ERROR
G-code: Standard.
M-code all levels: Standard.

ON ... GOTO/GOSUB
G-code: Standard.
M-code all levels: Not implemented.

OPENIN
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

OPENOUT
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

OPENUP

53

G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented,

OR
G-code: Standard.
M-code all levels: Standard,

OSCLI
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard
M-code level 1: Not implemented.

PAGE
G-code: Not implemented.
M-code all levels: Not implemented.

PI
G-code: Standard.
M-code all levels: Not implemented.

PLOT
G-code: Standard.
M-code all levels: Standard.

POINT
G-code: Standard.
M-code all levels: Standard.

POS
G-code: Standard.
M-code all levels: Standard.

PRINT
G-code: Standard.
M-code all levels: Mostly standard; since all numbers are integers there is no
need for the variety of formats offered by PRINT. Instead, only the bottom
byte of @% is taken into account to justify numbers. At level1, strings cannot
be printed.

54

PRINT#
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

PROC
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

PTR#
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

RAD
G-code: Standard.
M-code all levels: Not implemented.

READ
G-code: Standard.
M-code level 3: Integers and strings only.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

REM
G-code: Ignored.
M-code all levels: Ignored.

REPEAT
G-code: Standard.
M-code all levels: Standard.

REPORT
G-code: Standard.
M-code all levels: Standard.

55

RESTORE
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

RETURN
G-code: Standard.
M-code: Standard.

RIGHT$
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard
M-code level 1: Not implemented.

RND
G-code:
1) RND with no argument returns a random 32 bit integer
2) RND(0) returns the last random number generated as a real number
between zero and one.
3) RND(1) returns a real random number between zero and one.
4) RND(X) , where X is zero, returns the most recent random
number as a 32 bit integer.
5) RND(X), where X is one, returns zero.
6) RND(X), where X is greater than one, returns a random
integer between 1 and X.
7) RND(X) , where X is negative, restarts the random number generator.
M-code all levels: See above. Variations 2 and 1 cannot be translated and all
integers are 16 bit.

RUN
G-code: Standard.
M-code all levels: Standard.

SGN
G-code: Standard.
M-code: Integer only.

SIN
G-code: Standard.
M-code all levels: Not implemented.

56

SOUND
G-code: Standard.
M-code all levels: Standard.

SPC
G-code: Standard.
M-code all levels: Standard.

SQR
G-code: Standard.
M-code all levels: Not implemented.

STEP
G-code: Standard.
M-code all levels: Standard.

STOP
G-code: Standard.
M-code all levels: Standard,

STR$
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

STR$~
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Standard.
M-code level 1: Not implemented.

STRING$
G-code: Standard.
M-code level 3: Standard.
M-code level 2: Not implemented.
M-code level 1: Not implemented.

TAB
G-code: Standard.
M-code all levels: Standard.

57

TAN
G-code: Standard.
M-code all levels: Not implemented.

THEN
G-code: Standard.
M-code all levels: Standard.

TIME
G-code: Standard.
M-code all levels: Only the bottom 16 bits of the TIME value are available.

TO
G-code: Standard,
M-code all levels: Standard,

TOP
G-code: Not implemented.
M-code all levels: Not implemented.

TRACE
G-code: Not implemented.
M-code all levels: Not implemented.

TRUE
G-code: Standard.
M-code all levels: Standard.

UNTIL
G-code: Standard.
M-code all levels: Standard.

USR
G-code: Standard.
M-code all levels: Standard. The 16 bit value returned has the X register in
the most significant byte and the accumulator in the least significant byte.

VAL
G-code: Standard, with an extension to allow hexadecimal numbers to be
converted if preceded by a '&'.
M-code level 3: Integer only including the provision for hexadecimal
numbers.

58

M-code level 2: Integer only including the provision for hexadecimal
numbers.
M-code level 1: Not implemented.

VDU
G-code: Standard.
M-code all levels: Standard.

VPOS
G-code: Standard
M-code all levels: Standard

WIDTH
G-code: Standard
M-code all levels: Standard

59

13. Error message
summary

This section lists the error messages issued by the G-code compiler, the G-
code interpreter, the machine code converter and the machine code run
time system.

The G-code compiler error messages

 
Assembly Language  
Caused if assembly language is used.

Bad DIM  
Caused by a badly formed DIM statement.

Bad PROC/FN name  
Caused by declaring a procedure or function without a name.

Bad call 
Caused by including too many parameters in a procedure or function call.

Bad hex  
Occurs when & is used without any valid hexadecimal digits following it.

Can't complete function  
Caused by using one of the functions or pseudo variables PAGE, LOMEM, 
EVAL or TOP.

Escape  
Caused by pressing ESCAPE during compilation.

FOR variable  
Occurs when a string or byte variable is used as a FOR loop index.

File not found  
Occurs when the source filename you specified doesn't exist.

60

Incorrectly formed source program  
Caused by not having a valid program at the default PAGE address or by
trying to compile a file that isn't a BASIC program.

Memory full  
Occurs when all available memory has been used up. If you are compiling
from memory, the cure is to start compiling from disc/cassette. You can
also try to reduce the size of workspace required by Accelerator by using
shorter variable names and fewer line numbers.

Missing "  
Caused by the omission of the terminating quote symbol of a string.

Missing #  
Caused by the omission of the # symbol after BGET , PTR , EXT or EOF.

Missing )  
Caused by omitting the closing bracket of an expression or after the
parameter list of a function.

Missing ,  
Caused by omitting the comma between parameters for statements and
functions.

Missing =  
Caused by the omission of the equals sign from an assignment statement.

Missing PROC/FN after DEF  
Caused by omitting PROC or FN after DEF.

Missing parameters  
Occurs when a procedure or function that requires parameters is called
without any.

Mistake  
Caused by omitting the equals sign when assigning a new value to HIMEM
or TIME.

No TO  
Caused by the omission of the word TO from a FOR loop.

No such FN/PROC  
Occurs when an undefined procedure or function is called.

61

No such array  
Caused by a reference to an array for which there is no corresponding DIM
statement.

No such line  
Caused by a reference in a GOTO, GOSUB or RESTORE statement to a non-
existent line.

No such variable  
Caused by a reference to a variable that is not defined in the program. For
example, PRINT here, where the variable here is not defined elsewhere
in the program.

ON syntax  
Caused by using something other than GOTO/GOSUB or ERROR after ON.

Redefined PROC/FN  
Caused by defining the same procedure or function at two or more points
in a program.

Redimensioned array  
Caused by attempting to declare an array in more than one DIM statement.

Syntax error  
Caused by completely incomprehensible statements or attempting to use
TRACE, LOMEM or PAGE.

Too big  
Occurs if a real number is used in circumstances that require an integer and
the number is too big to convert to an integer. For example, PRINT 
EXT#(2.233434.)

Type mismatch 
Caused by attempting an operation on an inappropriate type (e.g. PRINT ‐ 
"HELLO") or by attempting to assign a string value to a numeric variable or
vice versa.

62

The G-code interpreter error messages

The error number reported by ERR is given for trappable errors.

‐ve root‐21  
Occurs if an attempt is made to take the square root of a negative number.
This may also occur with ACS and ASN.

Accuracy Lost‐23  
Occurs if an attempt is made to calculate trigonometric functions with very
large angles.

Bad G‐code  
An internal error meaning that the program under execution uses a G-code
wrongly or attempts to use an undefined G-code. This can only occur if the
program being run has been tampered with or was not produced by the
compiler.

Bad hex‐28  
Occurs when & is used without any valid hexadecimal digits following it.

Bad mode‐25  
Occurs if there is not enough memory spare to go to the mode specified in
a MOD E statement or if MOD E is used in a procedure or function.

Bad program  
Given when running G-code direct from memory if there is no valid
BASIC program at the default P AGE address.

DIM space‐11  
Occurs if there is not enough memory to allow an array to be dimensioned.

Division by zero‐18  
Occurs if an attempt is made to divide a number by zero.

Escape‐17  
Caused by pressing ESCAPE while the program is executing.

Exp range‐24  
Occurs when an attempt is made to evaluate a power greater than 88.

63

Log range‐26  
Occurs if an attempt is made to take the logarithm of a negative number or
of zero.

Memory full  
Occurs if all available memory has been exhausted.

Missing"  
Occurs if the closing quote mark of a string is omitted in the INPUT or
READ statements.

No FN‐7  
Occurs if a function terminator is executed outside a function definition.

No FOR‐32  
Occurs if a NEXT statement is encountered without a corresponding FOR
statement having been previously executed.

No G‐code program  
Occurs If the G-code program in memory or pulled off disc/cassette was in
some way badly formed.

No GOSUB‐38  
Occurs if a RETURN statement is encountered without a corresponding
GOSUB statement having been executed previously.

No PROC‐13  
Occurs if an ENDPROC statement is executed outside a procedure definition.

No REPEAT‐43  
Occurs if an UNTIL statement is encountered without a corresponding
REPEAT statement having been executed.

No such array‐14  
Occurs if an array is referenced before it is dimensioned,

No such Line‐41  
Occurs if the line number in a computed GOTO, GOSUB or RESTORE does
not exist.

Not LOCAL‐12  
Occurs if a LOCAL statement is executed outside a procedure or function
definition.

64

ON range‐40  
Occurs if the value of the expression in an ON GOTO/GOSUB statement is
too large. The remedy is to include an ELSE clause at the end of the
construction.

Out of DATA‐42  
Occurs if a READ statement is executed when no more DATA is available.

Re‐dimensioned array‐10  
Occurs if an attempt is made to re-dimension an array.

STOP  
Caused by execution of the STOP statement.

Subscript too big‐15  
Occurs if a subscript in an array access is too large.

Too big‐20  
Caused by a number becoming too large to be manipulated.

Too Long‐19  
Occurs if a string becomes longer than 255 characters, either through the
STRING$ function or by concatenation.

Too many FORs‐35  
Occurs if the FOR loop nesting limit of 10 is reached.

Too many GOSUBs ‐37  
Occurs when the maximum GOSUB RETURN nesting limit of 26 is reached,

Too many REPEATs ‐44  
Caused by nesting more than 20 REPEAT/UNTIL loops.

Type mismatch ‐6  
Occurs if the type of a datum read by INPUT# does not match the type of
the destination variable or if the type of the result of a function does not
match the type specified when it is called.

65

The machine code converter error
messages

 
Cannot trans Late G‐code  
Occurs when the converter encounters a G-code which cannot be
translated, even if a level 3 library is used.

G‐code not in Library  
Occurs when level 2 or 1 libraries are used and a feature only found in
higher level 1ibraries is encountered. The solution is thus to use a higher
level 1ibrary.

Mismatched REPEAT‐UNTIL  
Occurs at the end of a program if there is an outstanding
REPEAT for which no matching UNTIL has been encountered.

Out of memory  
Occurs when the converter runs out of memory, usually because the
program under conversion uses too many variables. The usual solution is to
split the original program into subsections and chain between them. If this is
not practicable, you can try to cut down on the overall number of variables
by using the same variable for as many different purposes as possible.

Real arithmetic  
Occurs when the converter encounters real arithmetic, variables or real
INPUTs, DIMs or READs, non of which can be translated.

Too many REPEATs  
Occurs if an attempt is made to nest more than 20 REPEAT/UNTIL loops.

Too many dimensions  
Occurs if an attempt is made to dimension an array with more than 15
dimensions.

UNTL without REPEAT  
Occurs if UNTIL is encountered without a corresponding REPEAT having
been processed.

66

The machine code run time system error
messages

 
Badmode‐25  
Occurs when an attempt is made to change display mode inside a procedure
or when there is not sufficient memory to allow the selected mode to be
used.

Can't match FOR‐&21  
Occurs when the variable given in a NEXT statement cannot be matched to
a corresponding FOR statement.

DIM space‐11  
Occurs when there is not enough room to dimension an array.

Division by zero‐18  
Occurs when an attempt is made to divide a number by zero.

HIMEM too low‐47  
Occurs when an attempt is made to set HIM E M below the top address
currently used for dynamic variable storage.

No FN‐7  
Occurs when a function termination (e.g. =RESULT%) is encountered
outside a function definition.

No FOR‐32  
Occurs when a NEXT statement is encountered without a corresponding
FOR statement having been executed.

No PROC‐13  
Occurs when ENDPROC is encountered outside a procedure definition.

No such Line in RESTORE‐41  
Occurs when a computed RESTORE is attempted to a non-existent line.

Not LOCAL‐12  
Occurs when LOCAL is encountered outside procedure or function
definitions.

67

Out of DATA‐42  
Occurs when an attempt is made to use READ when no more DATA can be
read.

Re‐dimensioned array‐10  
Occurs when an attempt is made to re-dimension an array.

STOP  
Occurs when the STOP statement is executed.

String too Long‐19  
Occurs when a string becomes longer than 255 characters, either through
the use of STRING$ or concatenation.

Subscript too Large‐15  
Occurs when an attempt is made to access an array where one of the
subscripts is larger than the corresponding dimension in the DIM statement.

Too big‐20  
Occurs when the result of an arithmetic computation is larger than 32,767.

Too many FORs‐35  
Occurs when the maximum FOR loop nesting depth of 10 is reached.

Type mismatch‐6  
Occurs when INPUT# encounters a real number, or attempts to read a
string into an integer or vice versa, Can also be caused by the 'wrong' type
being returned by a function.

Undimensioned array‐14  
Occurs when an attempt is made to access an array before it has been
dimensioned.

68

14. Specifications

Accelerator is a BBC BASIC to pseudo-code code compiler, a pseudo-code
interpreter (both in ROM), a pseudo to native code converter and utilities
(all on disc). The pseudo-code is a specially designed system called G-code.

The BBC BASIC to G-code compiler

This module takes a BBC BASIC source program from disc/cassette or
direct from memory and compiles it to produce a G-code object program,
which it optionally saves to disc/cassette.
The compiler will compile all of BBC BASIC version II with the following
differences:
LOMEM, PAGE, TOP, EVAL, TRACE, assembly language Not
implemented
VAL, INPUT - Extended to accept hexadecimal numbers
RND, FN - Rationalized for predictable type conversion
CHAIN - Loads and runs another G-code program
When compiling from memory, there must be enough room for the
original BASIC program, the G-code program and workspace. This
generally limits programs to about 10K in MODE 7. When compiling from
disc/cassette, there need only be enough room for the G-code program and
workspace, which allows programs up to about 25K to be compiled.

The G-code interpreter

This module takes a G-code object program from disc/cassette or direct
from memory and executes it. To do so, it moves the code to the correct
execution address and repeats the cycle of 'get the next G-code byte; call
the routine associated with it'. This cycle is halted either by an error or the
end of the program

69

The machine code converter (native
code generator)

This module takes a G-code object program off disc and converts it into
machine code, combining it with a specified run-time library file. The
finished code is output to another file. It can optionally generate machine
code in sideways ROM format, which allows the program to be executed
from sideways ROM/RAM.
Since the machine code converter uses a G-code file as its starting point, the
restrictions that apply to the BBC BASIC to G-code compiler apply by
extension to the machine code converter. There are several additional
differences:
Floating point variables, arithmetic and functions - Not implemented
Integers - Implemented in 16 bits
RND - Only integer variants may be used
Resident integer variables - Moved from page 4 to zero page
CHAIN - Loads and runs another machine code program
ESCAPE - No longer automatically trapped Error handling - Line numbers
of errors are not available
There is no intrinsic limit on the size of program that can be converted.

Utility - G-code relocator

This program takes a G-code program from disc/cassette and relocates it to
give it a different execution address.

Utility - Library generator

This program uses the standard libraries supplied on the utilities disc to
construct a new library to your specifications.

70

